Find the coordinates of the minimum point of the curve y=x^2+6x+5.

To answer this question is equivalent to minimising y=(x+3)^2-4. We have that all square numbers are greater than or equal to 0 so to minimise this equation, we require that (x+3)^2=0. This is satisfied only when x=-3. Then y=[(-3)+3]^2-4=-4. Our minimum point is therefore (-3,-4).

JI
Answered by Jonny I. Maths tutor

11995 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A right-angled triangle has a base of 5 cm, a height of 12 cm. Find the length of the hypotenuse.


Prove that the product of 3 consecutive integers is divisible by 6


Find the solutions to this quadratic equation: 0 = 2x^2 - 5x - 3


Solve the equation: x^2+7x=-12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning