Find the coordinates of the minimum point of the curve y=x^2+6x+5.

To answer this question is equivalent to minimising y=(x+3)^2-4. We have that all square numbers are greater than or equal to 0 so to minimise this equation, we require that (x+3)^2=0. This is satisfied only when x=-3. Then y=[(-3)+3]^2-4=-4. Our minimum point is therefore (-3,-4).

JI
Answered by Jonny I. Maths tutor

11901 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to find the longest side of a right-angled triangle if we are given the two other sides?


Please expand the following brackets: (x+3)(x+5). Give your answer in its simplest form.


Work out the nth term of the sequence 3, 7, 11, 15, ...


Solve algebraically the simultaneous equations 2x^2-y^2=17 and x+2y=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning