Find the coordinates of the minimum point of the curve y=x^2+6x+5.

To answer this question is equivalent to minimising y=(x+3)^2-4. We have that all square numbers are greater than or equal to 0 so to minimise this equation, we require that (x+3)^2=0. This is satisfied only when x=-3. Then y=[(-3)+3]^2-4=-4. Our minimum point is therefore (-3,-4).

JI
Answered by Jonny I. Maths tutor

12416 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

a) If x=4, work out 3(x^2). b) Solve 6x-3=x+11


Solve simultaneously 2x + 3y = 18 and y = 3x – 5 to find the value of x and y.


Solve the following simultaenous equations


Sam is a bodybuilder. He currently weighs 90kg, but is aiming to be at 130kg in the next four months. Every month, he puts on 8% of his weight. Does he reach his target?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning