Sketch the curve y=4-(x+3)^2, showing the points where the curve crosses the x-axis and any minimum or maximum points.

This equation rearranges to give -y=(x+3)^2-4, which is very similar to our curve y=(x+3)^2-4 from before. In fact, replacing y with -y in an equation is equivalent to reflecting the curve through the x-axis. We then take the points (-5,0), (-1,0) and (-3,-4) from before and replace y with -y, giving (-5,0), (-1,0) and (-3,4). We have found where the new curve crosses the x-axis and its minimum/maximum. The graph is an inverted u-shape since we have a -x^2 in the equation so (-3,4) is a maximum point.

JI
Answered by Jonny I. Maths tutor

3488 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Block 1 is 24mm long. Block 2 is 32mm long. Vignesh joins some type 1 blocks together to make a straight row. He then joins some type 2 blocks together to make a straight row of the same length. (a) Write down the shortest possible length of this row.


A linear equation has terms: a+2b, a + 6b, a + 10b, ......., ........ the second term equals 8 and the fifth term equals 44. Work out the value of a & b


Solve 8p = 24


How do you integrate?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences