Sketch the curve y=4-(x+3)^2, showing the points where the curve crosses the x-axis and any minimum or maximum points.

This equation rearranges to give -y=(x+3)^2-4, which is very similar to our curve y=(x+3)^2-4 from before. In fact, replacing y with -y in an equation is equivalent to reflecting the curve through the x-axis. We then take the points (-5,0), (-1,0) and (-3,-4) from before and replace y with -y, giving (-5,0), (-1,0) and (-3,4). We have found where the new curve crosses the x-axis and its minimum/maximum. The graph is an inverted u-shape since we have a -x^2 in the equation so (-3,4) is a maximum point.

JI
Answered by Jonny I. Maths tutor

3454 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are three boxes and one has a prize inside. You are told to choose a box. One of the other boxes is then opened, showing that it is empty. You are given the option to switch your choice to the other remaining box. Should you switch? Why?


What are surds and how do I use them ?


How do you solve simultaneous equations?


Expand and simplify (x − 4)(2x + 3y)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences