The curve C is defined by x^3 – (4x^2 )y = 2y^3 – 3x – 2. Find the value of dy/dx at the point (3, 1).

When we find dy/dx we find the gradient of the curve at (3,1). Start by differentiating the left hand side (LHS) like so.. (whiteboard). Remember every time we differentiate a y value we multiply by dy/dx. This is because we differentiate y with respect to y and then multiply by dy/dx to get y differentiated with respect to x (by the chain rule). We now differentiate the RHS... (whiteboard) Now collect the dy/dx terms on the LHS and the other terms on the RHS like so... (whiteboard) Now sub in x=3 and y=1 and we obtain dy/dx=1/7.

CR
Answered by Caitlin R. Maths tutor

5132 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Draw the curve for x^2-5x+6


Solve the equation 5^(2x) - 12(5^x) + 35 = 0


Integrate ((7e^(x/2))/4) with respect to x within the bounds of x=0 and x=2. (Basic introduction to definite integration)


The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning