The curve C is defined by x^3 – (4x^2 )y = 2y^3 – 3x – 2. Find the value of dy/dx at the point (3, 1).

When we find dy/dx we find the gradient of the curve at (3,1). Start by differentiating the left hand side (LHS) like so.. (whiteboard). Remember every time we differentiate a y value we multiply by dy/dx. This is because we differentiate y with respect to y and then multiply by dy/dx to get y differentiated with respect to x (by the chain rule). We now differentiate the RHS... (whiteboard) Now collect the dy/dx terms on the LHS and the other terms on the RHS like so... (whiteboard) Now sub in x=3 and y=1 and we obtain dy/dx=1/7.

CR
Answered by Caitlin R. Maths tutor

4811 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What's the proof for the quadratic formula?


Prove the identity: (sinx - tanx)(cosx - cotx) = (sinx - 1)(cosx - 1)


Use integration by parts to evaluate: ∫xsin(x) dx.


Express 3cos(theta) + 5sin(theta) in the form Rcos(theta - alpha) where R and alpha are constants, R>0 and 0<alpha<90. Give the exact value of R and the value of alpha to 2dp.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences