Find dy/dx of the equation (x^3)*(y)+7x = y^3 + (2x)^2 +1 at point (1,1)

Use the product rule d(u.v)/dx = u.(dv/dx) + v(du/dx). Calculate the LHS as such first. (Demonstrate on whiteboard.) Then calculate the RHS. (Demonstrate on whiteboard.) Group the dy/dx terms on one side of the equation and factor them out. Divide the factor through, to give the answer. (Demonstrate on white board) Put in x = 1 and y = 1 in to the equation to yield the answer. dy/dy = 1.

SP
Answered by Sophie P. Maths tutor

5495 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.


Let f(x) = 5x^4 + 6x^3 + 3, find dy/dx at x = 3


Solve x(5(3^0.5)+4(12^0.5))=(48^0.5) to the simplest form. (4 Marks)


What is integration?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning