Find dy/dx of the equation (x^3)*(y)+7x = y^3 + (2x)^2 +1 at point (1,1)

Use the product rule d(u.v)/dx = u.(dv/dx) + v(du/dx). Calculate the LHS as such first. (Demonstrate on whiteboard.) Then calculate the RHS. (Demonstrate on whiteboard.) Group the dy/dx terms on one side of the equation and factor them out. Divide the factor through, to give the answer. (Demonstrate on white board) Put in x = 1 and y = 1 in to the equation to yield the answer. dy/dy = 1.

SP
Answered by Sophie P. Maths tutor

5200 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of ln(x)


Find the 12th term and the sum of the first 9 terms on the following Arithmetic Progression: a = 2 and d = 3


Find the coordinates of the centre of the circle with equation: x^2 + y^2 − 2*x + 14*y = 0


Simplify (3x^2 - 6x)/ (6x^3 - 19x^2 + 9x +10)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences