Find dy/dx of the equation (x^3)*(y)+7x = y^3 + (2x)^2 +1 at point (1,1)

Use the product rule d(u.v)/dx = u.(dv/dx) + v(du/dx). Calculate the LHS as such first. (Demonstrate on whiteboard.) Then calculate the RHS. (Demonstrate on whiteboard.) Group the dy/dx terms on one side of the equation and factor them out. Divide the factor through, to give the answer. (Demonstrate on white board) Put in x = 1 and y = 1 in to the equation to yield the answer. dy/dy = 1.

SP
Answered by Sophie P. Maths tutor

5177 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (3x^2 - 6x)/ (6x^3 - 19x^2 + 9x +10)


A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences