Why does d/dx (tan(x)) = sec^2(x)?

This result comes from using a trig identity and the quotient rule. First, we write tan(x) as sin(x)/cos(x). Then we apply the quotient rule. After doing the standard derivatives, the numerator of our fraction becomes another trig identity, sine squared + cosine squared, which equals one. Now, looking at our fraction, we can see we have 1/cos^2(x). We can then rewrite this as (1/cos(x))^2. We apply our final trig identity now, 1/cos(x)=sec(x), and we see that d/dx tan(x) = sec^2(x). (Due to the nature of writing mathematics, this is far easier to represent and explain using the whiteboard)

TD
Answered by Tutor42661 D. Maths tutor

11226 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: y = sin(2x).


(a) Find the differential of the the function, y = ln(sin(x)) in its simplest form and (b) find the stationary point of the curve in the range 0 < x < 4.


Differentiate Y = 4X/(X^2+5) and give dy/dx in its simplest form


How do you show that two lines do, or do not intersect?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning