Why does d/dx (tan(x)) = sec^2(x)?

This result comes from using a trig identity and the quotient rule. First, we write tan(x) as sin(x)/cos(x). Then we apply the quotient rule. After doing the standard derivatives, the numerator of our fraction becomes another trig identity, sine squared + cosine squared, which equals one. Now, looking at our fraction, we can see we have 1/cos^2(x). We can then rewrite this as (1/cos(x))^2. We apply our final trig identity now, 1/cos(x)=sec(x), and we see that d/dx tan(x) = sec^2(x). (Due to the nature of writing mathematics, this is far easier to represent and explain using the whiteboard)

TD
Answered by Tutor42661 D. Maths tutor

10710 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the indefinite integral tan(5x)tan(3x)tan(2x)


Find the equation of the tangent to the curve y=x^3-4x^2+2 at the point (3,-7)


Solve the equation 7^(x+1) = 3^(x+2)


I don't understand how to visualise differentiation, please could you show my an example to allow me to understand what it actually is better?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning