Find the set of values for x for which x^2 - 9x <= 36

Rearrange to get x^2 - 9x - 36 <= 0 Solve quadratic (x-12)(x+3) <= 0 Solve for x x = 12, x = -3

Now, we have key points 12 and -3, we need the range of values for x where x^2 - 9x - 36 <= 0.

So, we can visualise quadratic. It's positive, so the range of values lower than y=0 will be -3 < x < 12. This is the answer.

DD
Answered by Daniel D. Maths tutor

10401 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find all the stationary points of the curve: y = (2/3)x^3 – (1/2)x^2 – 3x + 7/6 and determine their classifications.


What's the point of writing my mathematics well if I don't get extra marks for it?


Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?


A curve has equation y = 2x^5 + 5x^4 1 . (a) Find: (i) dy/ dx [2 marks] (ii) d^2y/ dx^2 (b) The point on the curve where x ¼ 1 is P. (i) Determine whether y is increasing or decreasing at P, giving a reason for your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning