Find the set of values for x for which x^2 - 9x <= 36

Rearrange to get x^2 - 9x - 36 <= 0 Solve quadratic (x-12)(x+3) <= 0 Solve for x x = 12, x = -3

Now, we have key points 12 and -3, we need the range of values for x where x^2 - 9x - 36 <= 0.

So, we can visualise quadratic. It's positive, so the range of values lower than y=0 will be -3 < x < 12. This is the answer.

DD
Answered by Daniel D. Maths tutor

10746 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (5-root3)/(5+root3)


Work out the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2. [5 marks]


Solve the simultaneous equation: y+4x+1=0 y^2+5x^2+2x=0


Using the Trapezium rule with four ordinates (three strips), estimate to 4 significant figures the integral from 1 to 4 of (x^3+12)/4sqrt(x). Calculate the exact value of this integral, comparing it with your estimate. How could the estimate be improved?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning