How do I integrate sin^2 (x) dx?

The key to answering this question is to recognise that a common substitution of u=sin(x) wont work straight away so we must write the integral in a different form. Knowing that cos(2x)=1-2sin^2(x), the sin^2(x)=(1/2)(1-cos(2x)). Therefore the integral equals the integral of (1/2)(1-cos(2x)). We know the integral of cos(2x) dx is (1/2)*(sin(2x)). Thus the integral of sin^2(x)dx equals (x-(1/2)*sin(2x))/2.

OU
Answered by Oghenebrume U. Maths tutor

173406 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you prove by contradiction the irrationality of surds. Use sqrt 2 as an example.


Find the derivative of sin^2(x)


A football is kicked at 30 m/s at an angle of 20° to the horizontal. It travels towards the goal which is 25 m away. The crossbar of the goal is 2.44 m tall. (A) Does the ball go into the goal, hit the crossbar exactly, or go over the top?


A smooth 4g marble is held at rest on a smooth plane which is fixed at 30 degrees to a horizontal table. The marble is released from rest - what speed is the marble travelling at 5 seconds after being released? Let g = 9.8ms^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning