A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.

Firstly, implicitly differentiate the function to find dy/dx in terms of y and x: dy=dx = (-x-2y)/(2x+y). Secondly, set this equal to zero to obtain an expression of y in relation to x or vice versa: x=-2y. Thirdly, input this into the original function to find the x or y coordinate candidates for P: -3y^2+27=0. Therefore the candidates are y=+/-3. Substituting this into either the original equation or the tangent equation will produce candidates for the x-co-ordinate. However, it is easier to insert it into x=-2y. This produces x=-6, or x=6. Given the provided condition, Q(-6,3).

RP
Answered by Rahul P. Maths tutor

8547 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0


The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?


Solve the equation: log5 (4x+3)−log5 (x−1)=2.


A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning