What are the differences between arithmetic and geometric sequences?

An arithmetic sequence has a constant difference between each term.
For example: 2,4,6,8,10,12,…
We can see clearly that all the terms differ by +2.
We call this the common difference, d.

A geometric sequence has a constant ratio (multiplier) between each term.
An example is: 2,4,8,16,32,…
So to find the next term in the sequence we would multiply the previous term by 2.
This is called the common ratio, r.

These sequences are closely related as they both have the same first term, but I hope you can see how different they become if they have a common difference or a common ratio.
We can create a decreasing arithmetic sequence by choosing a negative common difference.
Similarly, a decreasing geometric sequence would have a common ratio of less than 1. 

RJ
Answered by Ryan J. Maths tutor

164024 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I’m having some trouble understanding functions. Mainly concerning how to know what the input and outputs are. Could you give me an explanation?


A right-angled triangle has perpendicular sides of length 6cm and 8cm, and a hypoteneuse of 2y cm. Find the length of y.


A group of 55 students were asked if they had a cat or a dog. 11 were known to own both, 18 said they owned only a dog, and 34 said they owned at least a cat. Give the probability that a student has neither as a fraction in its simplest form.


Find the values of X and Y from the simultaneous equations: 1) 2x + 5y = 33 2) x + 3y = 19


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning