How do I find the equation of the tangent of a curve at a specific point.

The gradient is the rate of change at a specific point on the curve. Since the tangent is a straight line that touches the curve only once at a specific point, the gradient of the curve and the tangent will be the same at that point. We can find the equation of the tangent at any point on a curve by following the steps below: 1: Differentiating the equation of the curve i.e. finding d(f(x))/dx. 2: Substituting the x value of the point in the differentiated equation; we will get the gradient (m) of the curve at that point. 3: We then use the equation of a straight line: y-y1=m(x-x1) where y1 and x1 are the coordinates of the point and m is the gradient found in step 2.

AS
Answered by Aref S. Maths tutor

3813 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


Integrate ∫x^4+5x^3+sin(2x) dx


i) differentiate xcos2x with respect to x ii) integrate xcos2x with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning