How to integrate lnx by parts?

Integration by parts formula: ∫ udv/dx = uv - ∫ du/dxv dx

To solve this problem we need to use a trick by thinking of lnx as lnx1
So we can choose: u=lnx, dv/dx=1
The next step is to find du/dx and v.
du/dx=1/x                                          As we have differentiated each side with respect to x
v=x                                                         By integrating each side with respect to x
Now we have all the required parts to use the integration by parts formula.
∫ lnx = lnx
x – ∫ 1/x*x dx
                       = xlnx – ∫ 1 dx
                       = xlnx – x + c

RJ
Answered by Ryan J. Maths tutor

9222 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use Implicit Differentiation to find dy/dx of the following equation: 3(x)^2 + 8xy + 5(y)^2 = 4


Use the substitution u=2+ln(t) to find the exact value of the antiderivative of 1/(t(2+ln(t))^2)dt between e and 1.


Use integration by parts to find the integral of x sin(3x)


Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning