How to integrate lnx by parts?

Integration by parts formula: ∫ udv/dx = uv - ∫ du/dxv dx

To solve this problem we need to use a trick by thinking of lnx as lnx1
So we can choose: u=lnx, dv/dx=1
The next step is to find du/dx and v.
du/dx=1/x                                          As we have differentiated each side with respect to x
v=x                                                         By integrating each side with respect to x
Now we have all the required parts to use the integration by parts formula.
∫ lnx = lnx
x – ∫ 1/x*x dx
                       = xlnx – ∫ 1 dx
                       = xlnx – x + c

RJ
Answered by Ryan J. Maths tutor

9156 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why can't you divide something by 0?


(The question is too long so it's marked at the top of the answer space, sorry for any inconveniences)


The number of bacteria present in a culture at time t hours is modeled by the continuous variable N and the relationship N = 2000e^kt, where k is a constant. Given that when t = 3, N = 18 000, find (a) the value of k to 3 significant figures


Differentiate 3x^2 + 4x - 7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning