How to integrate lnx by parts?

Integration by parts formula: ∫ udv/dx = uv - ∫ du/dxv dx

To solve this problem we need to use a trick by thinking of lnx as lnx1
So we can choose: u=lnx, dv/dx=1
The next step is to find du/dx and v.
du/dx=1/x                                          As we have differentiated each side with respect to x
v=x                                                         By integrating each side with respect to x
Now we have all the required parts to use the integration by parts formula.
∫ lnx = lnx
x – ∫ 1/x*x dx
                       = xlnx – ∫ 1 dx
                       = xlnx – x + c

RJ
Answered by Ryan J. Maths tutor

8507 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 5x^3 + 4x^2 + 5x + 9


A curve has equation y=2x^3. Find dy/dx.


y = 4(x^3) + 7x ... Find dy/dx


x = 1 is a solution for the curve y = x^3-6x^2+11x-6, find the other solutions and sketch the curve, showing the location of any stationary points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences