How to integrate lnx by parts?

Integration by parts formula: ∫ udv/dx = uv - ∫ du/dxv dx

To solve this problem we need to use a trick by thinking of lnx as lnx1
So we can choose: u=lnx, dv/dx=1
The next step is to find du/dx and v.
du/dx=1/x                                          As we have differentiated each side with respect to x
v=x                                                         By integrating each side with respect to x
Now we have all the required parts to use the integration by parts formula.
∫ lnx = lnx
x – ∫ 1/x*x dx
                       = xlnx – ∫ 1 dx
                       = xlnx – x + c

RJ
Answered by Ryan J. Maths tutor

8606 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = (3x^2 + 1)^2


What is the derrivative (dy/dx) of the equation 2 = cos 4x - cos 2y in terms of x and y?


How do I deal with parametric equations? x = 4 cos ( t + pi/6), y = 2 sin t, Show that x + y = 2sqrt(3) cos t.


Find the stationary pointsof the following: (y = x^3 - x^2 -16 x -17) and determine if each point is a maximum or minimum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences