When integrating, why do we add a constant to the resulting equation?

The +c is to represent the loss in information after differentiation. Remember, integration is just the reverse of differentiation. Say we had this function:

f(x) = 2x^2 + 1 And we differentiate: f'(x) = 4x

Now take this second function: g(x) = 2x^2 + 4 And differentiating gives us: g'(x) = 4x

We can see that g'(x) = f'(x). So, if we try and integrate 4x, what do we get? Would it be 2x^2 + 1, or 2x^2 + 4?

The answer is it could be either. Or 2x^2 + 3. Or 2x^2 + 109823.1203981! There are infinite solutions to integration, depending on how you got there from differentiating. That's why we add the +c - to represent all the different possibilities.

TC
Answered by Tom C. Maths tutor

3503 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: y = 4x^3 - 5/x^2


Why do we need to differentiate?


For a curve of gradient dy/dx = (2/(x^2))-x/4, determine a) d^2y/dx^2 b) the stationary point where y=5/2 c) whether this is a maximum or minmum point and d) the equation of the curve


Solve the simultaneous equation y+4x+1=0 and y^2+5x^2+2x+0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences