How do you integrate xcos(x)?

Using integration by parts: split xcos(x) into x multiplied by cos(x). Differentiating x gives 1 and integrating cos(x) gives sin(x). The integral of xcos(x) can therefore be rewritten as xsin(x) - integral of 1*sin(x) using the formula for integration by parts. The integral of sin(x) is -cos(x), so the integral of xcos(x) becomes xsin(x) -(-cos(x)) which simplifies to xsin(x)+cos(x)+C where C is an arbitrary constant of integration.

AB
Answered by Aleksandr B. Maths tutor

7731 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coefficient of x^4 in the expansion of: x(2x^2 - 3x + 1)(3x^2 + x - 4)


A curve has the equation: x^2(4+y) - 2y^2 = 0 Find an expression for dy/dx in terms of x and y.


f(x) = x^3+2x^2-x-2 . Solve for f(x) = 0


Show that 2sin(2x)-3cos(2x)-3sin(x)+3=sin(x)(4cos(x)+6sin(x)-3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning