How do you integrate xcos(x)?

Using integration by parts: split xcos(x) into x multiplied by cos(x). Differentiating x gives 1 and integrating cos(x) gives sin(x). The integral of xcos(x) can therefore be rewritten as xsin(x) - integral of 1*sin(x) using the formula for integration by parts. The integral of sin(x) is -cos(x), so the integral of xcos(x) becomes xsin(x) -(-cos(x)) which simplifies to xsin(x)+cos(x)+C where C is an arbitrary constant of integration.

AB
Answered by Aleksandr B. Maths tutor

7069 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate sin^2(x)?


Find the values of x and y for which dy/dx = 0 in y= x^3 - 4x^2 - 3x +2


Integrate x*sin(x) with respect to x.


Find the tangent and normal to the curve y=(4-x)(x+2) at the point (2, 8)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning