How do you integrate xcos(x)?

Using integration by parts: split xcos(x) into x multiplied by cos(x). Differentiating x gives 1 and integrating cos(x) gives sin(x). The integral of xcos(x) can therefore be rewritten as xsin(x) - integral of 1*sin(x) using the formula for integration by parts. The integral of sin(x) is -cos(x), so the integral of xcos(x) becomes xsin(x) -(-cos(x)) which simplifies to xsin(x)+cos(x)+C where C is an arbitrary constant of integration.

AB
Answered by Aleksandr B. Maths tutor

8045 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

given y = x^2 - 7x + 5, find dy/dx from first principles


Differentiate the following: 4x^3 + sin(x^2)


Find the coefficient of the x^2 term in in the expansion of (1+x)^4.


Find the equation of the tangent to the curve y^3 - 4x^2 - 3xy + 25 = 0 at the point (2,-3).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning