How do you integrate xcos(x)?

Using integration by parts: split xcos(x) into x multiplied by cos(x). Differentiating x gives 1 and integrating cos(x) gives sin(x). The integral of xcos(x) can therefore be rewritten as xsin(x) - integral of 1*sin(x) using the formula for integration by parts. The integral of sin(x) is -cos(x), so the integral of xcos(x) becomes xsin(x) -(-cos(x)) which simplifies to xsin(x)+cos(x)+C where C is an arbitrary constant of integration.

AB
Answered by Aleksandr B. Maths tutor

8066 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the constant term in the expression (x^2-1/x)^9


How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2


Find dy/dx of y=e^xcosx


How do I show that (cos^4x - sin^4x) / cos^2x = 1 - tan^2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning