Express cos(x) + (1/2)sin(x) in terms of a single resultant sinusoidal wave of the form Rsin(x+a)

cos(x) + (1/2)sin(x) :

Rsin(x + a) = R{sin(x)cos(a) + cos(x)sin(a)} = (1/2)sin(x) + (1)cos(x) (comparing coeffs.)

Therefore Rcos(a) = 1/2 and separately Rsin(a) = 1 So tan(a) = 2 and R^2 = 5/4.

Answer: sqrt(5/4)sin(63.4)

HT
Answered by Hakkihan T. Maths tutor

6805 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


What is the equation of the tangent at the point (2,1) of the curve with equation x^2 + 3x + 4.


Find the equation of the tangent to the curve y = (5x+4)/(3x -8) at the point (2, -7)


Find the value of (cos(x) + sec(x))^2 with respect to x when evauated between pi/4 and 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences