How do I find the cartesian equation for a curve written in parametric form?

Reminder - a cartesian equation is written in terms of x and y (e.g. y = 2x + 3) while parametric equations are written with x and y separately in terms of t.

Example: Find the cartesian equation of the curve given by these parametric equations:

x = 2t + 1, y = 1/t (where t is not equal to zero)

First make t the subject in one of the equations.

x = 2t (then divide both sides by 2)

x/2 = t

Now substitute your result for t into the second equation.

y = 1/t (then substitute in t = x/2)

y = 1/(x/2) (then simplify)

y = 2/x

This is now in cartesian form.
 

AO
Answered by Alexis O. Maths tutor

10145 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Perhaps an introduction to integration with a simple integral, e.g. the integral of x^2


Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.


How do you solve the equation e^2x - 2e^x - 3 = 0 ?


Prove that 2 cot (2x) + tan(x) == cot (x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning