How do I find the cartesian equation for a curve written in parametric form?

Reminder - a cartesian equation is written in terms of x and y (e.g. y = 2x + 3) while parametric equations are written with x and y separately in terms of t.

Example: Find the cartesian equation of the curve given by these parametric equations:

x = 2t + 1, y = 1/t (where t is not equal to zero)

First make t the subject in one of the equations.

x = 2t (then divide both sides by 2)

x/2 = t

Now substitute your result for t into the second equation.

y = 1/t (then substitute in t = x/2)

y = 1/(x/2) (then simplify)

y = 2/x

This is now in cartesian form.
 

AO
Answered by Alexis O. Maths tutor

10275 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2


Integrate f(x)=lnx


Find all solutions to the equation 8sin^2(theta) - 4 = 0 in the interval 2(pi) < (theta) < 4(pi)


Express x^2+3x+2 in the form (x+p)^2+q, where p and q are rational numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning