How do I find the cartesian equation for a curve written in parametric form?

Reminder - a cartesian equation is written in terms of x and y (e.g. y = 2x + 3) while parametric equations are written with x and y separately in terms of t.

Example: Find the cartesian equation of the curve given by these parametric equations:

x = 2t + 1, y = 1/t (where t is not equal to zero)

First make t the subject in one of the equations.

x = 2t (then divide both sides by 2)

x/2 = t

Now substitute your result for t into the second equation.

y = 1/t (then substitute in t = x/2)

y = 1/(x/2) (then simplify)

y = 2/x

This is now in cartesian form.
 

AO
Answered by Alexis O. Maths tutor

10015 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use logarithms to solve the equation 2^(n-3) = 18000, giving your answer correct to 3 significant figures.


Expand and simplify (3 + 4*root5)(3 - 2*root5)


What is the derivative of f(x)=sqrt(3x+2)=(3x+2)^(1/2)?


Use logarithms to solve 9^x=15


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences