What is the value of the integral of e^x from x = 1 to x = 2?

As the derivative of e^x is e^x, so is the integral (plus some constant). As we wish to find the value of the integral from x = 1 to x = 2, we substitute x=2 into e^x, and from that we subtract e^x with x=1. The answer is therefore e^2 - e^1, or equivalently e(e - 1).

JH
Answered by Jake H. Maths tutor

4075 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Implicitly differentiate the following equation to find dy/dx in terms of x and y: 2x^2y + 2x + 4y – cos (piy) = 17


A curve (C) with equation y=3x^(0.5)-x^(1.5) cuts the X axis at point A and the origin, calculate the co-ordinates of point A.


Using complex numbers, derive the trigonometric identities for cos(2θ) and sin(2θ).


How to integrate e^(5x) between the limits 0 and 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning