Two lines have equations r_1=(1,-1,2)+a(-1,3,4) and r_2=(c,-4,0)+b(0,3,2). If the lines intersect find c:

If the lines intersect the position vectors r_1 and r_2 must be equal at the point of intersection, so: (1,-1,2)+a(-1,3,4)=(c,-4,0)+b(0,3,2) which gives three equations for the three components: 1-a=c, -1+3a=-4+3b, 2+4a=2b. From the last two obtain b=5 and a=2 then substitute in the first to find c=-1.

AZ
Answered by Aleksandar Z. Maths tutor

4434 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)


Using the factor theorem, factorise x^4 - 3x^3 - 3x^2 + 11x - 6


Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.


Given that y = 4x^5 - 5/(x^2) , x=/=0 , find a)dy/dx b)indefinite integral of y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning