Two lines have equations r_1=(1,-1,2)+a(-1,3,4) and r_2=(c,-4,0)+b(0,3,2). If the lines intersect find c:

If the lines intersect the position vectors r_1 and r_2 must be equal at the point of intersection, so: (1,-1,2)+a(-1,3,4)=(c,-4,0)+b(0,3,2) which gives three equations for the three components: 1-a=c, -1+3a=-4+3b, 2+4a=2b. From the last two obtain b=5 and a=2 then substitute in the first to find c=-1.

AZ
Answered by Aleksandar Z. Maths tutor

4111 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f = ln(x^2 + 1) / (x ^ 2 + 1).


Use integration by parts to find the integral of xsinx, with respect to x


let p be a polynomial p(x) = x^3+b*x^2+ c*x+24, where b and c are integers. Find a relation between b and c knowing that (x+2) divides p(x).


Event A: a customer asks for help. Event B a customer makes a purchase. We know: p(B) = 0.2 and p(A) knowing that he has asked for help is 75%. What is the probability of a customer to ask for help and make a purchase?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences