a) Solve the following equation by completing the square: x^(2)+ 6x + 1= 0. b) Solve the following equation by factorisation: x^(2) - 4x - 5 = 0 c) Solve the following quadratic inequality: x^(2) - 4x - 5 < 0 (hint use your answer to part b)

a) x^(2) + 6x + 1 = 0 (x + 3)^(2) - 8 = 0 x = - 3 + sqrt(8) or x = - 3 - sqrt(8)

b) (x-5)(x+1) = 0 x = -1 or 5

c) using answer to part b: (x-5)(x+1) < 0 draw its graph then: -1<x<5

GM
Answered by George M. Maths tutor

4380 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum


Given f(x) = 3 - 5x + x^3, how can I show that f(x) = 0 has a root (x=a) in the interval 1<a<2?


What is the gradient of the curve y = 2x^3 at the point (2,2)?


Use integration by parts to integrate the following function: x.sin(7x) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences