Show that 12 cos 30° - 2 tan 60° can be written in the form√ k where k is an integer

Firstly work out (using the sin cos tan triangle and soh cah toa) what cos 30° and tan 60° are equal to so tan 60° = √3 and cos 30° = √3 / 2 then substitute these values into the euqation giving 12 x √3 / 2 - 2 √3 which can be simplified to 6 √3 - 2 √3 (because the 12 is divisible by 2) this can be simplified further to 4√3 (because the √3 is consistent in each number you can simply do 6-2 = 4)

EN
Answered by Eve N. Maths tutor

30554 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 200 students in Year 10 110 are boys. There are 250 students in Year 11 140 are boys. Which year has the greater proportion of boys? (Taken from Nov 2014 AQA Unit 2)


Find an equation of the line which passes through the point (4,-7) and has slope 3.


Re-arrange (3x+y)/2 = x+z making x the subject.


Solve the simultaneous equations y = x^2 +3x and y = x+8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning