How do you integrate ln(x)?

Use the method of integration by parts. uv-integral(v.du/dx). Make u equal to ln(x) and dv/dx equal to 1. Therefore v=x and du/dx=1/x. Hence uv=xln(x). And v.du/dx=x/x=1. Substituting these into the 'by parts' formula gives xln(x)-integral(1 dx)= xln(x)-x+C (where C is the constant of integration)

MS
Answered by Michael S. Maths tutor

3355 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Water is flowing into a rightcircular cone at the rate r (volume of water per unit time). The cone has radius a, altitude b and the vertex or "tip" is pointing downwards. Find the rate at which the surface is rising when the depth of the water is y.


How do you integrate a fraction when x is on the numerator and denominator?


What is the chain rule?


Prove that (1-cos2x)/sin(2x) = tan(x) where x ≠ nπ/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning