How do you integrate ln(x)?

Use the method of integration by parts. uv-integral(v.du/dx). Make u equal to ln(x) and dv/dx equal to 1. Therefore v=x and du/dx=1/x. Hence uv=xln(x). And v.du/dx=x/x=1. Substituting these into the 'by parts' formula gives xln(x)-integral(1 dx)= xln(x)-x+C (where C is the constant of integration)

MS
Answered by Michael S. Maths tutor

3158 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points and their nature of the curve y = 3x^3 - 7x + 2x^-1


solve x^3+2x^2+x=0


What is the gradient of the function y=x^3 at the point x=1?


Find dy/dx such that y=(e^x)(3x+1)^2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning