How do you find the gradient of a curve?

Unlike a straight line, the gradient of a curve is not a constant i.e. not one single number. To find the gradient of a curve, you different the equation of the curve. To find the gradient at a specific point you then substitute its x and y values into the gradient equation. For example, for a curve with equation y=4x^2 + 2x -3, you will differentiate each term by multiplying by it's power and then lowering the power by one, like this: 4x^2 becomes (2)(4)(x^1) = 8x, then 2x becomes 2 and -3 becomes 0. Thus the differential is given by: dy/dx = 8x +2. If you wanted to know the gradient at say a point (2,17) then you simply substitute in 2 for x, giving: dy/dx = 8(2)+2 = 18.

AM
Answered by Anna M. Maths tutor

35879 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the integral of a function the area?


A triangle has sides a,b,c and angles A,B,C with a opposite A etc. If a=4,b=3,A=40, what is the area of the triangle?


Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]


How do I show two lines are skew?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning