How do you find the gradient of a curve?

Unlike a straight line, the gradient of a curve is not a constant i.e. not one single number. To find the gradient of a curve, you different the equation of the curve. To find the gradient at a specific point you then substitute its x and y values into the gradient equation. For example, for a curve with equation y=4x^2 + 2x -3, you will differentiate each term by multiplying by it's power and then lowering the power by one, like this: 4x^2 becomes (2)(4)(x^1) = 8x, then 2x becomes 2 and -3 becomes 0. Thus the differential is given by: dy/dx = 8x +2. If you wanted to know the gradient at say a point (2,17) then you simply substitute in 2 for x, giving: dy/dx = 8(2)+2 = 18.

AM
Answered by Anna M. Maths tutor

32957 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate (2x+1) / (3x^2 - 5)?


Differentiate 3x^2 + 6x^5 + 2/x


Find dy/dx for (x^2)(y^3) + ln(x^y) = 5sin(6x)/x^(1/2)


If y = (1+3x)^2, what is dy/dx?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences