Find the stationary points on the curve y = x^3 + 3x^2 - 9x - 4

A stationary point is where the gradient is exactly zero - the curve is neither increasing or decreasing. This means that we need to differentiate y to find dy/dx and then set this equal to 0. Doing this, using the normal rules for differentiation, we would get 3x^2 + 6x -9 Then, we would set this equal to zero and factorise the equation to find out the x values of our stationary points. Doing this, we get (x + 3)(x - 1) = 0 Leaving x=-3 or x=1 Finally, substitute these values into y = x^3 + 3x^2 -9x -4 and this will give you the y-coordinates to the stationary points. The final answers are therefore (-3,23) and (1,-9)

RR
Answered by Richard R. Maths tutor

16391 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given log3(3b + 1) - log3(a-2) = -1 for a > 2. Express b in terms of a.


A ball is thrown in the air. The height of the ball at time t is given by: h=5+4t-2t^2. What is its maximum height? At what time does the ball reach this height?


I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?


I don't understand differentiation. How does it work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning