Find the stationary points on the curve y = x^3 + 3x^2 - 9x - 4

A stationary point is where the gradient is exactly zero - the curve is neither increasing or decreasing. This means that we need to differentiate y to find dy/dx and then set this equal to 0. Doing this, using the normal rules for differentiation, we would get 3x^2 + 6x -9 Then, we would set this equal to zero and factorise the equation to find out the x values of our stationary points. Doing this, we get (x + 3)(x - 1) = 0 Leaving x=-3 or x=1 Finally, substitute these values into y = x^3 + 3x^2 -9x -4 and this will give you the y-coordinates to the stationary points. The final answers are therefore (-3,23) and (1,-9)

RR
Answered by Richard R. Maths tutor

15896 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 5x(3) + 7x + 3, find A) dy/dx B) d2y/dx2


log3 (9y + b) – log3 (2y – b) = 2, Find y in terms of b.


Statistics: What is the difference between a Binomial and Poisson distribution?


y = 6x^2 + 8x + 2. Find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences