Find the stationary points on the curve y = x^3 + 3x^2 - 9x - 4

A stationary point is where the gradient is exactly zero - the curve is neither increasing or decreasing. This means that we need to differentiate y to find dy/dx and then set this equal to 0. Doing this, using the normal rules for differentiation, we would get 3x^2 + 6x -9 Then, we would set this equal to zero and factorise the equation to find out the x values of our stationary points. Doing this, we get (x + 3)(x - 1) = 0 Leaving x=-3 or x=1 Finally, substitute these values into y = x^3 + 3x^2 -9x -4 and this will give you the y-coordinates to the stationary points. The final answers are therefore (-3,23) and (1,-9)

RR
Answered by Richard R. Maths tutor

16654 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that x = ln(sec(2y)) find dy/dx


Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2


Find the equation of the normal to the curve x^3 + 2(x^2)y = y^3 + 15 at the point (2, 1)


Differentiate x^3⋅cos(5⋅x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning