Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$

Generally, quadratic equation of the form $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$ where $\color{orange}{a} \neq 0$ can be solve by evaluating $$\color{brown}{\Delta} = \color{blue}{b}^2 - 4\color{orange}{a}\color{green}{c}$$ Then, depending on the sign of $\color{brown}{\Delta}$ $$ \begin{array}{c|c|c} \color{brown}{\Delta} > 0 & \color{brown}{\Delta} = 0& \color{brown}{\Delta} < 0 \ \hline \textrm{two solutions} & \textrm{one solution} & \textrm{no real solutions}\ \hline x = \frac{-\color{blue}{b} \pm \sqrt{\color{brown}{\Delta}}}{2\color{orange}{a}} & x = \frac{-\color{blue}{b}}{2\color{orange}{a}}& - \end{array} $$ Then for your particular case we have $$\color{orange}{1}x^2 - \color{blue}{8}x + \color{green}{15} = 0$$ $$\color{brown}{\Delta} = (\color{blue}{-8})^2 - 4 \times \color{orange}{1} \times \color{green}{15}$$ $$\color{brown}{\Delta} = 4$$ Since $\color{brown}{\Delta} > 0$ we get that $$x = \frac{-(\color{blue}{-8}) \pm \sqrt{\color{brown}{4}}}{2 \times \color{orange}{1}}$$ $$x = \frac{8 \pm 2}{2}$$ $$x = 4 \pm 1$$ $$x = 5 \qquad \vee\ \qquad x = 3$$

MC
Answered by Maciej C. Maths tutor

3579 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


A curve has parametric equations x= 2sin(t) , y= cos(2t) + 2sin(t) for -1/2 π≤t≤ 1/2π , show that dy/dx = - 2sin(t)+ 1


a) Solve the following equation by completing the square: x^(2)+ 6x + 1= 0. b) Solve the following equation by factorisation: x^(2) - 4x - 5 = 0 c) Solve the following quadratic inequality: x^(2) - 4x - 5 < 0 (hint use your answer to part b)


Find dy/dx for y=5x^3−2x^2+7x−15


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning