Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)

y=ln([2x-1/2x=1]^1/2)- can be written as y= [0.5ln(2x-1)]-[0.5ln(2x+1)] due to laws of logs. Take first term -- (0.5ln(2x-1)) and substitute 2x-1 for u. so u=2x-1 and y=0.5lnu Now dy/du=1/2u and du/dx=2. to find dy/dx, times these 2 together - giving dy/dx=2/2u = 1/u = 1/2x-1 Doing the same method for the second term gives you that d/dx of 0.5ln(2x+1)is dy/dx= 1/2x+1 Therfore by subbing these back into the orignial equation,l the derivative of the enitre equation becomes dy/dx = (1/[2x-1])-(1/[2x+1])

SF
Answered by Sam F. Maths tutor

10159 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write 9sin(x) + 12 cos(x) in the form Rsin(x+y) and hence solve 9sin(x) + 12 cos(x) = 3


Solve for 0<x≤2π, cos^2(x)-3cos(x)=5sin^2(x)-2, giving all answers exactly


How do I use numerical methods to find the root of the equation F(x) = 0?


How do I differentiate 4x^3 + 2x + x^4 with respect to x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences