Solve the simultaneous equations: 3x+2y=4 and 2x+y=3

When solving simultaneous equations there are several options, the two most common methods being substitution and elimination. For this example I shall use elimination. In order to do so, either x or y must have the same coefficient in both equations. The simplest way of doing so is to multiply the second equation by 2 in order that the coefficient of y in both equations is 2. This gives us 4x+2y=6. We can then subtract the second equation from the first to eliminate y as a variable. This leaves -x=-2 or more simply put, x=2. We then substitute x=2 into either equation to solve for y. If we use the first we get: 3(2)+2y=4 or 6+2y=4. To simplify this, we take 6 over to the right side and subtract it from 4 (since signs become the opposite when taken over the equals sign). We are left with: 2y=-2. We divide both sides by 2 and are left with y=-1.

CG
Answered by Catherine G. Maths tutor

11330 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

simply fully (2x^2 -3)^2 - (2x^2 + 2)^2


Solve algebraically the simultaneous equations, x^2 + y^2 = 25 and y – 3x = 13


£X was invested for 5 years, earning compound interest of 2% per year. After 5 years the total value of the investment was £11,040.81. How do I calculate the value of the invested amount £X?


A fridge of height 2m and width 0.8m is tilted in a delivery van so that one edge rests on the edge of a table and another touches the ceiling, as shown in the diagram. The total height of the inside of the van is 1.5m. Find the height of the table.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences