Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.

In order to find turning points, we differentiate the function. Hence we get f'(x)=2x + 4. Setting f'(x)=0 we get x = -2 and inputting this into f(x) we get y = 0 therefore the turning point is (-2,0). To find out wether this is a min or max we find f''(x) which is 2. Since 2>0 we know that this is a minimum point.

BA
Answered by Basim A. Maths tutor

12981 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate gf(-5) for the functions f(x)=3x+7, g(x)=3x^2+6x-9


Differentiate y=(x^2+1)(e^-x)


A curve is described by the equation x^3 - 4y^2 = 12xy. a) Find the points on the curve where x = -8. b) Find the gradient at these points.


Find the x and y coordinates of the turning points of the curve 'y = x^3 - 3x^2 +4'. Identify each turning point as either a maximum or a minimum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning