By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0

x^4 -8x^2 +15 = 0, we rewrite the equation in square form as (x^2-4)^2 -16 +15 =0 (x^2 -4)^2 = 1 x^2 -4 = ±1 so x^2 = 4±1, (x^2 = 3 or x^2 = 5) Therefore x = {-√3, √3, -√5, √5)

CS
Answered by Callum S. Maths tutor

2910 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to the curve y = x^2 + 3x + 2 at x = 1


The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


Three forces of magnitude 50N, PN, QN all act in a horizontal plane in equilibrium. The diagram shows the forces. DIAGRAM: QN = EAST, 50 = SOUTH, PN = 120 DEGREES ANTICLOCKWISE FROM QN a) Find P. b) Find Q.


Solve the following equation for k, giving your answers to 4 decimal places where necessary: 3tan(k)-1=sec^2(k)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences