By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0

x^4 -8x^2 +15 = 0, we rewrite the equation in square form as (x^2-4)^2 -16 +15 =0 (x^2 -4)^2 = 1 x^2 -4 = ±1 so x^2 = 4±1, (x^2 = 3 or x^2 = 5) Therefore x = {-√3, √3, -√5, √5)

CS
Answered by Callum S. Maths tutor

2991 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points on y = x^3 + 3x^2 + 4 and identify whether these are maximum or minimum points.


Simplify (3x^2-x-2)/(x^2-1)


Solve the equation: log5 (4x+3)−log5 (x−1)=2.


How to draw the inverse of a function ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences