By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0

x^4 -8x^2 +15 = 0, we rewrite the equation in square form as (x^2-4)^2 -16 +15 =0 (x^2 -4)^2 = 1 x^2 -4 = ±1 so x^2 = 4±1, (x^2 = 3 or x^2 = 5) Therefore x = {-√3, √3, -√5, √5)

CS
Answered by Callum S. Maths tutor

3364 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


How do you differentiate simple algebra?


What is ln(10)-ln(5)?


Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning