By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0

x^4 -8x^2 +15 = 0, we rewrite the equation in square form as (x^2-4)^2 -16 +15 =0 (x^2 -4)^2 = 1 x^2 -4 = ±1 so x^2 = 4±1, (x^2 = 3 or x^2 = 5) Therefore x = {-√3, √3, -√5, √5)

CS
Answered by Callum S. Maths tutor

3054 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Line AB has the equation 3x + 5y = 7. Find the gradient of Line AB.


Find dy/dx of the equation (x^3)*(y)+7x = y^3 + (2x)^2 +1 at point (1,1)


Solve Inx + In3 = In6


Find dy/dx at t=3, where x=t^3-5t^2+5t and y=2t^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences