How to integrate ln(x)

How to integrate ln(x)?

In order to integrate log x of base e, we are going to apply integration by parts.

Recall that the formula for integration by parts is:

  /                                  /

 | f(x) g'(x) = f(x) g(x) - | f'(x) g(x)

 /                                 /

The application of integration by parts is interesting because there is only one function being integrated. We need an f and g'. The key step in this problem is we can manufacture a function by making

ln(x) = 1 * ln (x)

We can choose f(x) = ln (x) , g'(x) = 1 ==>>>> f'(x) = 1/x, g(x) = x

Then,

 /            /                                  /                                    /

 | ln(x) = | 1ln(x) dx = xln(x) - | x * (1/x) dx = x*ln(x) - | 1 dx 

/            /                                  /                                    /

 

    = x*ln(x) - x + C

 

ZL
Answered by Zaiyang L. Maths tutor

14211 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find values of x for which 2x^2 < 5x + 12


Find d/dx (ln(2x^3+x+8))


How would you use the following expression to approximate [(4-5x)/(1+2x)(2-x)] when x=5 (A2 pure)


Let y = x^x. Find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences