How do you find the gradient of a line at a certain point when f(x) is in the form of a fraction, where both the numerator and denominator are functions of x?

Take the example f(x)=(2x^2+1)/(3x+5) , where we're finding the gradient at x=0. First, you need to differentiate f(x) to get f'(x). Because f(x) is a fraction where both the numerator and denominator are functions of x, we use the quotient rule. This gives us f'(x)=((3x+5)(4x)-(2x^2+1)(3))/(3x+5)^2 Now, we plug in the value of x, since f'(x) gives us the gradient. So f'(0)=((30+5)(40)-(20^2+1)(3))/(30+5)^2 f'(0)=-3/25 This means the gradient of f(x) at x=0 is -3/25

PE
Answered by Phoebe E. Maths tutor

6534 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x)=x^2 and g(x)=5x-11, then what is fgg(x) when x=3?


differentiate y=8x^3 - 4*x^(1/2) + (3x^2 + 2)/x


simplify (3x^2 - x - 2) / (x^2 - 1)


Using Trigonometric Identities prove that [(tan^2x)(cosecx)]/sinx=sec^2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning