How do you find the gradient of a line at a certain point when f(x) is in the form of a fraction, where both the numerator and denominator are functions of x?

Take the example f(x)=(2x^2+1)/(3x+5) , where we're finding the gradient at x=0. First, you need to differentiate f(x) to get f'(x). Because f(x) is a fraction where both the numerator and denominator are functions of x, we use the quotient rule. This gives us f'(x)=((3x+5)(4x)-(2x^2+1)(3))/(3x+5)^2 Now, we plug in the value of x, since f'(x) gives us the gradient. So f'(0)=((30+5)(40)-(20^2+1)(3))/(30+5)^2 f'(0)=-3/25 This means the gradient of f(x) at x=0 is -3/25

PE
Answered by Phoebe E. Maths tutor

6452 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A function f is defined by f(x) = x^3 - 3x^2 + 1. i) Write down f'(x). ii) Hence find the co-ordinates of the stationary points of the curve y=f(x).


A curve has equations: x=2sin(t) and y=1-cos(2t). Find dy/dx at the point where t=pi/6


Express as a simple logarithm 2ln6 - ln3 .


Find the Total Area between the curve x^3 -3x^2 +2x and the x-axis, when 0 ≤ x ≤ 2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning