Answers>Maths>IB>Article

A scalene triangle has base of 5cm. The angle opposite to the base is 63°, and a second angle is 72°. Find the area of the traingle

Using the sine rule it's possible to find the length opposite to the 72° angle. Therefore: 5/(sin63)=x/(sin72) x=5sin(72)/sin(63)=5.34 At this point, the third angle is needed. Since a triangle has a total sum of the angles of 180°, the following calculation is done: alpha=180-(63+72)=45° The formula for the area of a triangle is: Area=0.5absinC The two sides known are 5 and 5.34, and therefore the angle that is needed is subsequently the last one that was calculated, i.e.: 45° Adding these numbers in will yield the final result: Area=0.5x5x5.34xsin(45)=9.35cm^2

AL
Answered by Alessandro L. Maths tutor

2393 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How do you calculate the probability P(X < x) for a normally distributed random variable X?


Given 2x^2-3y^2=2, find the two values of dy/dx when x=5.


How can we calculate the maximum and minimum points of a function?


Given two functions f and g where f(x)=3x-5 and g(x)=x-2. Find: a) the inverse f^-1(x), b) given g^-1(x)=x+2, find (g^-1 o f)(x), c) given also that (f^-1 o g)(x)=(x+3)/3, solve (f^-1 o g)(x)=(g^-1 o f)(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning