Expand (x+3)(2x+9)

(In terms of formatting, we'll use little x "x" to mean the algebraic variable, and big x "X" to mean multiply). When we see two sets of brackets written next to each other, such as (...)(...), this means that we need to multiply them together. When expanding brackets (i.e. multiplying them together), we need to multiply each element in the left-bracket, with each element in the right-bracket. [Be careful: we don't mutliply the elements in the left-bracket with other elements in the left-bracket, e.g. x and 3, or 2x and 9 (right)]. So, if we start with the first element in the left-bracket, x: 1) x X 2x = 2x^2 [Can you see why? When we multiply, we will get 2xx, which we can simplify as x^2 by collecting the x terms]. 2) x X 9 = 9x [Because we have 9 lots of x, i.e. 9x]. Now, if we do the second element in the right-bracket, 3: 1) 3 X 2x = 6x 2) 3 X 9 = 27 Now we have multiplied all our elements, we can simply add them together to give: (x+3)(2x+9)=2x^2 + 9x + 6x + 27 = 2x^2 + 15x + 27 This is expanded and simplified.

LB
Answered by Luke B. Maths tutor

8812 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If one shop has melons for sale on a buy one get one free offer at £2 a melon with each melon weighing 2kg, and a second shop offering melons at 30p per kilogram. Which shop is the best value for money?


John wants to invest £100 into a savings account for 15 years. If he invests in saving account A he will receive 3.5% simple interest and if he invests in savings account B he will receive 3% compound interest. Which account should he choose and why?


An exam has two papers. Alan scores: 33 out of 60 on paper 1 & 75 out of 100 on paper 2. Work out his percentage score for the exam?


A rectangle has an area of 20 cm2. Its length and width are enlarged by scale factor 3. Find the area of the enlarged rectangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning