When you integrate a function why do you add a constant?

That is a good question. Let me try to help you figure this out by working through a few simple examples. We know that differentiation is like a reverse process of right? So let us differentiate a few functions.

What is the derivative of f(x) = x^2 , f'(x)=2x ,right?

What is the derivative of f(x) = x^2 + 5, also f'(x)=2x, right?

What is the derivative of f(x) = x^2 + 10, also f'(x)=2x, right?

As you see the derivative is the same for all the function above. This is because differentiation gets rid of any constant given, meaning any value with no power of x in front of it disappears. Therefore, we add a constant when we integrate as we do not know what the exact function is, we just know what the coefficients of x are. Here is are diagrams to help understand this.

MZ
Answered by Mohsin Z. Maths tutor

3950 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x+2)/((x+5)(x-7)) using partial fractions between the limits 5 and -2, giving your answer to 3sf


Express 1/((x^2)(1-3x) in partial fractions.


I don't understand integration by parts - can you explain it please?


How do you differentiate using the chain rule?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences