Find the exact value of sin(75°). Give your answer in its simplest form.

sin(A+B) ≡ sin(A)cos(B) + sin(B)cos(A)

⇒ sin(75°) = sin(30+45)° = sin(30°)cos(45°) + sin(45°)cos(30°)

= ½ × 1/√2 + 1/√2 ×(√3)/2 = 1/(2√2) + (√3)/(2√2)

= (1+√3)/(2√2)

LM
Answered by Leigh M. Maths tutor

103347 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does the product rule for differentiating functions work?


Prove the property: log_a(x) + log_a(y) = log_a(xy).


Implicitly differentiate the following equation to find dy/dx in terms of x and y: 2x^2y + 2x + 4y – cos (piy) = 17


The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning