Find the exact value of sin(75°). Give your answer in its simplest form.

sin(A+B) ≡ sin(A)cos(B) + sin(B)cos(A)

⇒ sin(75°) = sin(30+45)° = sin(30°)cos(45°) + sin(45°)cos(30°)

= ½ × 1/√2 + 1/√2 ×(√3)/2 = 1/(2√2) + (√3)/(2√2)

= (1+√3)/(2√2)

LM
Answered by Leigh M. Maths tutor

103663 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using Trigonometric Identities prove that [(tan^2x)(cosecx)]/sinx=sec^2x


Differentiate the function f(x)=2xsin3x


How can you integrate the function (5x - 1)/(x^(3)-x)?


integrate (4cos^4 x -4cos^2x+1)^1/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning