MYTUTOR SUBJECT ANSWERS

422 views

How do you prove that (3^n)-1 is always a multiple of 2?

Proof by Induction: The method of Proof by Induction is a simple but very powerful technique. It involves 3 steps:

1) Showing a claim is true for a basic integer value of n (e.g. 0 or 1)

2) Assuming the claim is true for n=k where k is an arbitrary integer

3) Using this assumption to show that the claim is true for n=k+1

The reason why these 3 steps prove the claim is because you've shown 2 things: You've shown that the claim's true for 0 (or 1). You've also shown that is the claim is true for n=k, then it's also true for n=k+1. And so if the claim is true for n=0 (or 1), then the claim is true for n=1(or 2). Then if the claim is true for n=1 (or 2) then it's true for n=2 (or 3) and so on. So the claim is true for all integers n greater than or equal to 0.

 

1) In this particular case, we'll start with n=0:

(3^0)-1 = 1-1 = 0 = 2 x 0 and so the claim holds.

2) Now let's assume the claim is true for n=k. That is, (3^k)-1 is a multiple of 2. So (3^k)-1 = 2c for some integer c.

3) Now let's look at n=k+1:

(3^(k+1))-1 = 3 x (3^k) - 1

Using our assumption, (3^k)-1 = 2c, so that (3^k)=2c+1

Now we have 3 x (2c + 1) - 1 = 6c + 3 -1 = 6c +2 = 2(3c + 1)

(3^(k+1))-1 = 2(3c + 1) and since (3c + 1) is an integer, we have proven the claim.

Saleem A. A Level Physics tutor, A Level Maths tutor, GCSE Maths tuto...

2 years ago

Answered by Saleem, an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

176 SUBJECT SPECIALISTS

£22 /hr

Alex B.

Degree: Physics (Masters) - Durham University

Subjects offered: Maths, Physics

Maths
Physics

“About me: I’m Alex and I have just completed my first year studying physics at Durham University, with a first. I have a passion for mathematics and how it can be applied to solve problems in physics. Throughout my A levels, other stu...”

£20 /hr

Alicia E.

Degree: Classics BA (Bachelors) - Exeter University

Subjects offered: Maths, Latin+ 2 more

Maths
Latin
English Literature

“Hello! My name is Alicia, most people just call me Alice, I'm happy with either. I am studying Classics at the University of Exeter so I am very much committed to the classical world but still enjoy the subjects I took at A-Level and ...”

£20 /hr

Liam B.

Degree: Mathematics & Economics (Joint Honours) (Bachelors) - Durham University

Subjects offered: Maths, Economics

Maths
Economics

“About Me: I am currently an undergraduate student studying Mathematics & Economics at Durham University. I have always found myself enjoying Maths during my time learning, and I hope to be able to share this joy with yourself by ensuri...”

About the author

Saleem A.

Currently unavailable: for new students

Degree: Mathematics (Masters) - Oxford, St Catherine's College University

Subjects offered: Maths, Physics+ 2 more

Maths
Physics
-Personal Statements-
-Oxbridge Preparation-

“I place emphasis on understanding material rather than learning it, you don't need a tutor to help you memorize content”

MyTutor guarantee

You may also like...

Other A Level Maths questions

Solve x^2 + 8x +3 = 0 by completing the square.

When and how do I use the product rule for differentiation?

Use logarithms to solve 9^x=15

How do you find the coordinates of stationary points on a graph?

View A Level Maths tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok