why is sin(x) squared plus cos(x) squared 1?

Thinking of sine and cosine as ratios of side lengths in a right angled triangle, sin(x) = o/h and cos(x) = a/h, so the sin(x)^2 + cos(x)^2 becomes (o^2 + a^2)/h^2. By Pyhtagoras, o^2 + a^2 = h^2, so we get h^2/h^2 = 1.

sin/cos = tan is derived similarly, sin/cos = (o/h)/(a/h) = o/a = tan

MS
Answered by Matthew S. Maths tutor

19546 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the location and nature of the turning point of the line y=-x^2+3x+2


Find the x co-ordinates of the stationary points of the graph with equation y = cos(x)7e^(x). Give your answer in the form x = a +/- bn where a/b are numbers to be found, and n is the set of integers.


Show that 2(1-cos(x)) = 3sin^2(x) can be written as 3cos^2(x)-2cos(x)-1=0.


Given f(x) = (x^4 - 1) / (x^4 + 1), use the quotient rule to show that f'(x) = nx^3 / (x^4 + 1)^2 where n is an integer to be determined.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning