why is sin(x) squared plus cos(x) squared 1?

Thinking of sine and cosine as ratios of side lengths in a right angled triangle, sin(x) = o/h and cos(x) = a/h, so the sin(x)^2 + cos(x)^2 becomes (o^2 + a^2)/h^2. By Pyhtagoras, o^2 + a^2 = h^2, so we get h^2/h^2 = 1.

sin/cos = tan is derived similarly, sin/cos = (o/h)/(a/h) = o/a = tan

MS
Answered by Matthew S. Maths tutor

18329 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent and normal to the curve y=(4-x)(x+2) at the point (2, 8)


Intergrate 8x^3 + 6x^(1/2) -5 with respect to x


Solve for 0=<x<360 : 2((tanx)^2) + ((secx)^2) = 1


Find the integral of xcosx(dx)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences