Factorise x^3+3x^2-x-3

Test factors of -3 to find a root for the equation. For example, try 1, 1^3+3*1^2-1-3=0, so 1 is a root, and (x-1) is a factor. Now it's known that: (ax^2+bx+c)(x-1)=x^3+3x^2-x-3. By comparing coefficients for x^3 term, a=1, and for x^0 term, c=3. Then for the x term, c-b=-1, so b=4. Therefore the original equation equals (x^2+4x+3)(x-1). Now factorise the quadratic to give (x+3)(x+1)(x-1). Expanding the bracket again can be used to check your answer.

SC
Answered by Sian C. Maths tutor

6594 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


Given that: y = 5x^3 + 7x + 3. What is dy/dx? What is d^2y/dx^2?


Find the solutions to x^3+4x^2+x-5=1


Find dy/dx when y = 5x^6 + 4x*sin(x^2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences