How to differentiate a function?

Let's look at the function y = 3x^2 + 6x + 3. Differentiating it gives us the derivative of y: dy/dx = 6x + 6. The original function has three terms. Let's look at each term:

  1. 3x^2 (^2 means to the power of 2). This becomes 6x, because we take the index 2, multiply it by the coefficient 3, and subtract 1 from the index.
  2. 6x becomes 6, because we again multiply the index by the coefficient and subtract one from the index. This gives us 6x^0, but anything to the power of 0 equals 1, so we are left with just 6.
  3. 3 is removed altogether, because it doesn't have an x attached to it.
ES
Answered by Edmunds S. Maths tutor

8488 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve simultaneously: 3x+2y=7 & x-2y=-3


Factorise 3y^2 + 2y


Insert one pair of brackets so that this calculation is correct; 3 x 6 + 5 - 1 = 32


Make c the subject of the formula a=3c-12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning