Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2

Make use of identity sech^2(x) = tan^2(x) + 1

=> 2{tan^2(x) + 1} = 3 + tan(x)

Multiply out brackets and rearrange

=> 2tan^2(x) - tan(x) - 1 = 0

Use quadratic formula with a = 2, b = -1, c = -1

=> tan(x) = (1 ± 3) / 4

But for the range of x given, tan(x) must be positive

=> x = arctan(1) = pi/4

RM
Answered by Robert M. Maths tutor

8540 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Question 3 on the OCR MEI C3 June 2015 paper. Find the exact value of Integral x^3 ln x dx between 1 and 2.


y = 4x/(x^2+5). a) Find dy/dx, writing your answer as a single fraction in its simplest form. b) Hence find the set of values of x for which dy/dx < 0


Find the solutions to z^2 = i


dh/dt = (6-h)/20. When t=0, h=1. Show that t=20ln(5/(6-h))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning