Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2

Make use of identity sech^2(x) = tan^2(x) + 1

=> 2{tan^2(x) + 1} = 3 + tan(x)

Multiply out brackets and rearrange

=> 2tan^2(x) - tan(x) - 1 = 0

Use quadratic formula with a = 2, b = -1, c = -1

=> tan(x) = (1 ± 3) / 4

But for the range of x given, tan(x) must be positive

=> x = arctan(1) = pi/4

RM
Answered by Robert M. Maths tutor

8541 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The triangle ABC is such that AC=8cm, CB=12cm, angle ACB=x radians. The area of triangle ABC = 20cm^2. Show that x=0.430 (3sf)


f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


A curve has an equation y=3x-2x^2-x^3. Find the x-coordinate(s) of the stationary point(s) of the curve.


Why is the derivative of x^2 equal to 2x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning