Find the integral of ln(x)

To solve this, we must use integration by parts as we can’t solve it directly. The formula for integration by parts is integral(UdV)=UV-integral(V*dU). The trick with this is to set dV=1 and to set U=ln(x). These multiplied together make ln(x) so the formula is suitable. We first look at working out the variables used in the RHS of the formula. To find V we integrate dV=1 This integrated gives us V=x. We also need to work out dU from U=ln(x). To find this we differentiate U giving dU=1/x.

Now we have everything we need to substitute these values into the formula, we start by working out the individual parts of the formula

Firstly: U*V=ln(x)*x

Secondly: integral(VdU)=integral(x1/x)=integral(1)=x+C (don’t forget the constant of integration)

So overall this gives:

integral(UdV)=UV-integral(V*dU)

integral(ln(x))=x*ln(x)-x+C

MR
Answered by Matilda R. Maths tutor

4847 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that r^2(r + 1)^2 - r^2(r - 1)^2 ≡ 4r^3.


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Find the location and nature of the turning point of the line y=-x^2+3x+2


For the curve y = 2x^2+4x+5, find the co-ordinates of the stationary point and determine whether it is a minimum or maximum point.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning