How do we know that the derivative of x^2 is 2x?

To answer this we must remember that the derivative at a point on a curve, in this case x^2, is simply the value of the gradient of the line that just touches that point on the line. We can start by approximating the value of this gradient by drawing a line between the point at x and a small distance h across which we call x+h. To work out the gradient of this line we've drawn we can use the change in height over the change in width. The difference in the height is given by (x+h)^2-x^2 and the difference in the width is given by h and so the gradient of this approximate line is given as ((x+h)^2-x^2)/h which can expand to give (2x+h). Notice if we making h smaller and smaller, the approximate line that we draw gets closer and closer to the tangent line that defines our derivative. We can go as far as to say h gets infinitesimally small and can be treated as if it is 0 and so we are just left with our 2x as the value of the tangent. This is called taking a limit and the same approach can be used to work out the derivatives of other functions and derive the general rule of x^n=nx^(n-1) with the use of the binomial formula.

JM
Answered by Jamie M. Maths tutor

4053 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)


A function f is defined by f(x) = x^3 - 3x^2 + 1. i) Write down f'(x). ii) Hence find the co-ordinates of the stationary points of the curve y=f(x).


How do I differentiate y = ln(sin(3x))?


Using transformation rules and your knowledge of trigonometric functions, draw the graph y=2sin(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning