integrate function (x^4+3x)/(x^2) with respect to x

split the integral into (x^4)/(x^2) and (3x)/(x^2) which becomes x^2 and 3*(1/x). These can now be integrated separately and added together after the integration.

first integral: raise the power form 2 to 3, then divide by the new power. This gets (x^3)/3

second integral: remove the 3 from within the integral. realise that 1 is the differential of x. Thereofore 1/x satisfies the condition of f'(x)/f(x). When a function like this is integrated, the answer becomes logarithmic Becoming ln(f(x)) which is ln(x)

therefore the final answer is (x^3)/3+3*ln(x)

CS
Answered by Calum S. Maths tutor

3261 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the equation of a tangent to a given point on a curve?


What is Taylor Series


If x=-2,1,2 and the y intercept is y=-8 for y=ax^3+bx^2+cx+d, what is a, b, c and d


What are the roots of 3x^2 + 13x + 4 ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences