Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.

Since Rsin(x+y)=Rsin(x)cos(y)+Rsin(y)cos(x), we can set Rcos(y)=4 (1) and Rsin(y)=3 (2) on comparison to the desired equation. Considering (2) divided by (1) we see that tan(y)=sin(y)/cos(y)=3/4 so y=atan(3/4). Considering (1)^2+(2)^2 we see that R^2=25 so R=5 and we are done.

WV
Answered by William V. Maths tutor

10710 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations, 2x+y-5=0 and x^2-y^2=3


7^6 x 7^3


Calculate dy/dx of the following equation: y = 3x^3 - 6x^2 + 2x - 6


Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences