Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.

Since Rsin(x+y)=Rsin(x)cos(y)+Rsin(y)cos(x), we can set Rcos(y)=4 (1) and Rsin(y)=3 (2) on comparison to the desired equation. Considering (2) divided by (1) we see that tan(y)=sin(y)/cos(y)=3/4 so y=atan(3/4). Considering (1)^2+(2)^2 we see that R^2=25 so R=5 and we are done.

WV
Answered by William V. Maths tutor

10539 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

evaluate the integral 2x/((9+x^2)^1/2) between -2 and 0


How to integrate lnX?


If y=2x+4x^3+3x^4 and z=(1+x)^2, find dy/dx and dz/dx.


∫2x(x+2)^(1/2) dx evaluated from 0->2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences