f(x) = x^2 + 4x − 6 f(x) can be written in the form (x + m)^2 + n. Find the value of m and the value of n.

Because we know (x+m)^2 expanded will provide x^2+2mx+m^2 and we have the extra addition of a value named n we can strictly focus on ensuring the expansion yields x^2+4x and deal with the -6 value by using n. Thus, by putting m as 2 we get x^2+4x+4, and following through to achieve -6 instead of 4, we put n as -10, and so we get the desired answer.

MG
Answered by Majed G. Maths tutor

9970 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Use factorisation to simplify the following expression (x^2-9)/(x^2-4x+3)


Prove algebraically that 
(2n + 1)^2 – (2n + 1) is an even number for all positive integer values of n. (3 marks)


Solve the simultaneous equations y = x^2 +3x and y = x+8


A ladder 6·8m long is leaning against a wall, as shown in the diagram. The foot of the ladder is 1·5m from the wall. Calculate the distance the ladder reaches up the wall. Give your answer to a sensible degree of accuracy.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning