Differentiate y=ln(2x^2) with respect to x

Making a substitution for u = 2x^2 Now y = ln(u) dy/dx = du/dx * dy/du du/dx = 4x dy/du = 1/u dy/dx = 4x/u Then substitute 2x^2 back in as u The final answer is 4x/(2x^2) Which can be simplified by dividing through by 2 and x to get 2/x

CG
Answered by Catherine G. Maths tutor

5441 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.


Express 4sinx + 3cosx in the form Rcos(x-a)


Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid


How do you go about differentiating a^x functions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning