I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?

(In tandem with the whiteboard) Integration is a way of working out the total of something. An example of this is if you see a graph of velocity and time, the area under the graph is the total distance travelled. This makes sense if the velocity is constant, you don't need a complex mathematical process to see what the distance is. But how about if the velocity isn't constant?

Let's look at a simple example, which uses a little bit of physics. Let's examine the total force that water exerts on a wall. This will demonstrate the way to derive an indefinite integral from first principles and then apply it - it should then be more apparent what the purpose of integration is.

CM
Answered by Cain M. Maths tutor

3099 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning points of the curve y = 3x^4 - 8x^3 -3


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


Given that 5cos^2(x) - cos(x) = sin^2(x), find the possible values of cos(x) using a suitable quadratic equation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning